The Phenotype-Fitness Map in Experimental Evolution of Phages
نویسندگان
چکیده
Evolutionary biologists commonly interpret adaptations of organisms by reference to a phenotype-fitness map, a model of how different states of a phenotype affect fitness. Notwithstanding the popularity of this approach, it remains difficult to directly test these mappings, both because the map often describes only a small subset of phenotypes contributing to total fitness and because direct measures of fitness are difficult to obtain and compare to the map. Both limitations can be overcome for bacterial viruses (phages) grown in the experimental condition of unlimited hosts. A complete accounting of fitness requires 3 easily measured phenotypes, and total fitness is also directly measurable for arbitrary genotypes. Yet despite the presumed transparency of this system, directly estimated fitnesses often differ from fitnesses calculated from the phenotype-fitness map. This study attempts to resolve these discrepancies, both by developing a more exact analytical phenotype-fitness map and by exploring the empirical foundations of direct fitness estimates. We derive an equation (the phenotype-fitness map) for exponential phage growth that allows an arbitrary distribution of lysis times and burst sizes. We also show that direct estimates of fitness are, in many cases, plausibly in error because the population has not attained stable age distribution and thus violates the model underlying the phenotype-fitness map. In conjunction with data provided here, the new understanding appears to resolve a discrepancy between the reported fitness of phage T7 and the substantially lower value calculated from its phenotype-fitness map.
منابع مشابه
Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria.
Parasitism creates selection for resistance mechanisms in host populations and is hypothesized to promote increased host evolvability. However, the influence of these traits on host evolution when parasites are no longer present is unclear. We used experimental evolution and whole-genome sequencing of Escherichia coli to determine the effects of past and present exposure to parasitic viruses (p...
متن کاملExposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients
The use of phages for treating bacterial pathogens has recently been advocated as an alternative to antibiotic therapy. Here, we test a hypothesis that bacteria treated with phages may show more limited evolution of antibiotic resistance as the fitness costs of resistance to phages may add to those of antibiotic resistance, further reducing the growth performance of antibiotic-resistant bacteri...
متن کاملPhages limit the evolution of bacterial antibiotic resistance in experimental microcosms
The evolution of multi-antibiotic resistance in bacterial pathogens, often resulting from de novo mutations, is creating a public health crisis. Phages show promise for combating antibiotic-resistant bacteria, the efficacy of which, however, may also be limited by resistance evolution. Here, we suggest that phages may be used as supplements to antibiotics in treating initially sensitive bacteri...
متن کاملSmoothing representation of fitness landscapes--the genotype-phenotype map of evolution.
We investigate a simple evolutionary game of sequences and demonstrate at this example the structure of fitness landscapes in discrete problems. We show the smoothing action of the genotype-phenotype mapping which makes evolution feasible. Further we propose the density of sequence states as a classifying measure of fitness landscapes.
متن کاملStatistical mechanics of convergent evolution in spatial patterning.
We explore how the genotype-phenotype map determines convergent evolution in a simple model of spatial gene regulation during development. Evolution is simulated via a Monte Carlo scheme that incorporates mutation, selection, and genetic drift, by using a bottom-up model of gene regulation with a fitness function that is optimized by a switch-like response to a morphogen gradient. We find that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011